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Topological geometrodynamics (TGD) is an attempt to a unified description of  
fundamental interactions based on the assumption that physically allowed space- 
times are representable as submanifolds of the space, which is a Cartesian product 
of  Minkowski space (or possibly of  its light cone) and of some compact space 
S. This paper is the first one in the series intended for the presentation of  TGD. 
The basic ideas TGD are represented and it is shown that CP2, the complex 
projective space of  two complex dimensions, is the simplest choice of the space 
S providing explanation for the known elementary particle quantum numbers 
provided a topological explanation for the family replication phenomenon,  
emerging naturally in TGD framework, is accepted. 

1. INTRODUCTION 

During the past years considerable progress has been made in the 
understanding of the fundamental interactions. The concept of the broken 
gauge invariance has shown its power in the description of the electroweak 
interactions (Weinberg, 1967; Salam, 1968; Glashow, 1961; Abers and Lee, 
1973; Bailin, 1977). In the description of strong interactions the QCD 
approach based on the idea of unbroken gauge invariance has had remark- 
able successes (Politzer, 1974; Close, 1979; Reya, 1981). It must be admitted, 
however, that this approach has not yet led to a satisfactory understanding 
of the confinement problem (Susskind and Kogut, 1976; Brander, 1981): 
thus the status of QCD as the correct model of the strong interactions is 
not yet established. 

The above-mentioned successes have motivated even more ambitious 
attempts aiming at the unification of electroweak and strong interaction 
theories using only the concept of the broken gauge invariance (GUTS; 
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Georgi and Glashow, 1974; Fritsch and Minkoski, 1975; Georgi, 1975). The 
invention of supersymmetry (Gelfand and Likhtman, 1971; Volkov and 
Akulov, 1973 ; Wess and Zumino, 1974) has had a decisive influence on the 
model building since it makes possible to generalize the concept of  the local 
gauge invariance to that of  local supersymmetry and as a consequence 
bosons and fermions can be handled on the same footing. 

Despite the considerable work done in the model building one can 
fairly say that there exists no compelling unification scenario yet and that 
the concept of gauge invariance, even in its supersymmetric form, is perhaps 
not all what is needed to carry out the unification program. 

What could this "missing something" be? It is well known that the 
Yang-Mills gauge potentials can be regarded as components of  a connection 
in an appropriate bundle over space-time (Husemoller, 1960; Madore, 1981) 
and therefore they correspond to a geometric object. This suggests that it 
is not the gauge invariance alone but rather the geometric nature of  the 
gauge fields, which underlies the successes of, say the GWS model of the 
electroweak interactions. This is turn suggests that the program of geometriz- 
ation of physics, initiated by Einstein, is the correct path to follow, when 
one tries to solve the unification problem. 

Indeed, one can regard the Kaluza-Klein approach (Kaluza, 1921; 
Klein, 1926; Witten, 1980) as an attempt in this direction. The basic idea 
of  this approach is to replace the four-dimensional space-time with a 
higher-dimensional space, which is typically a bundlelike structure having 
"ordinary space-time" as base space; the fiber is some compact "internal 
space" having size of order Planck length. What makes the Kaluza-Klein 
approach so attractive is that it relates the Yang-Mills fields to the geometry 
of the higher-dimensional space and also raises the hope of explaining the 
so-called internal quantum numbers geometrically. 

The idea that the geometrization of physics, by suitably generalizing 
and modifying the basic notions of particle and space-time, might solve the 
unification problem, is also central in the TG D  approach (Topological 
GeometroDynamics)  program, which has developed into its present form 
during the past five years (Pitk~inen, 1981, 1983). 

The starting point of  the TGD approach is what might be called the 
energy problem of general relativity. In GRT it turns out difficult to find 
any completely satisfactory definition of the energy concept, and more 
generally, that of four momentum and angular momentum (Faddeev, 1982; 
Denisov and Mestrishvili, 1981). In fact TGD can be regarded as an attempt 
to construct a Poincar6 invariant theory of gravitation and of other funda- 
mental interactions based on the following assumptions. 

(1) The "physically allowed" space-times X 4 are representable as 
submanifolds of  some space H = M 4 x  S,  where M 4 denotes Minkowski 
space and S denotes some compact space with spacelike metric. 
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(2) The distances in X 4 are measured using the length units of the 
space H so that the metric of X 4 is induced from the metric of the space 
H (Eisenhart, 1964). 

(3) The theory is invariant under the isometries of the space H so that 
the fundamental conservation laws follow from the isometries of the M 4 

factor of the space /4. 
In this and subsequent papers our aim is to give an understandable 

account of the present state of TGD. The plan of the series is roughly the 
following: 

In the first paper we do the following: (1) discuss the basic ideas of 
TGD (partially familiar from the previous publications); (2) propose a 
topological description of particles and particle reactions; and (3) consider 
the constraints on the choice of the space H and show that the space 
H = V x CP2, where V denotes either Minkowski space or its light cone 
and CP2 is the complex projective space of  real dimension 4 (Eguchi et al., 
1980; Gibbons and Pope, 1978; Hawking and Pope, 1978), is a respectable 
candidate. 

It should be emphasized that several ideas and results represented in 
these papers have appeared already in the previous publications but not in 
their final form. 

In the second paper of the series we formulate and study the dynamics 
at semiclassical level. The third paper of the series is devoted to the 
construction of quantum TGD. 

Notations 

Symbol Meaning 

H= V x S  

M 4 / M  4 

CP2 
hk/mk/s k 
~k, (k, k=  l, 2 
XO~, ~o, 

k k 1 hl~/ml~/Slo 

hkJ mkl/ Skl 
e2 
Vk/ Bk/ Ak 

imbedding space, which is a Cartesian product of V 
and S 

Minkowski space/light cone of  Minkowski space 
complex projective space of complex dimension 2 
coordinates for space H/M4/S  
complex coordinates for CP2 
coordinates for the interior/boundary component of 

a submanifold X n 
partial derivatives of  the coordinate variables of 

H/M4/S with respect to the coordinate variables 
of X n 

components of the metric tensor for H/M4/S  
components of the vielbein in H 
components of vielbein connect ion/Kahler  poten- 

t ial/spinor connection in H 
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Symbol 

k l 
g,~t3 = hkthl,~hl~ 
V~/B~/A~ 

k __ k H ~  - D~h 1 
H k = g ~ H k ~  

F k  

r~ = rkh~ 

Dk/  D,~ 
X ~ 
Int X ~ 
• i X  n 

Meaning 

curvature form of  vielbein connect ion/Kahler  
form/curvature form of spinor connection 

induced metric in X n 
induced vielbein connect ion/Kahler  potential /spinor 

connection in X"  
second fundamental form for X"  
trace of the second fundamental form 
gamma matrices for the space H 
gamma matrices for X"  
flat space gamma/sigma matrices for space H 
modified gamma matrices of  the space H / X "  �9 
covariant derivative in H / X "  
n-dimensional submanifold of  H 
interior of X"  
ith boundary component  of X"  

2. BASIC IDEAS 

2.1. A Poincar~ Invariant Theory of Gravitation 

In general relativity it has turned out difficult to find any completely 
satisfactory definition of  the conserved four momentum and angular 
momentum (Faddeev, 1982; Denisov and Mestrishvili, 1981). 

The reason for this circumstance is easy to understand. The basic 
assumption of GTR is that the presence of the matter makes the surrounding 
space-time curved so that the symmetries of the empty space-time are lost; 
space-time is no more homogenous and isotropic. Since the basic conserva- 
tion laws follow as consequences of these symmetries it is not surprising 
that one encounters difficulties when trying to find a general coordinate 
invariant definition of the four momentum and angular momentum as 
conserved quantities. In practice these difficulties are passed over by arguing 
that the gravitational interaction is so weak that one can safely do, say 
particle physics, in Minkowski space. 

Unfortunately the extreme weakness of the gravitational interaction 
makes it difficult to experimentally test whether these conservation laws are 
exact or not. Therefore it is of considerable interest to try to construct a 
physical theory based on the following assumptions: 

(1) The gravitational interactions are describable in terms of the space- 
time geometry. 

(2) Poincar6 transformations act as exact symmetries of the theory. 
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As far as we know, the only way to construct this kind of theory is 
based on the following assumptions: 

(1) The physically allowed space-times X 4 are representable as sub- 
manifolds of  some space H = M 4 • S, where M 4 denotes Minkowski space 
and S denotes some "internal space," which is compact and has spacelike 
metric. 

(2) The distances in X 4 are measured using the length scale of  the 
space H so that the metric g ~  of X 4 is induced from the metric of the 
space H or in component  form: 

k 1 g,~t3 = hklhl,~hlt3 (1) 

(here the quantities h k refer to the coordinate variables of H ;  see Notations). 
(3) The isometries of H act as symmetries of the theory to be construc- 

ted so that the basic conservation laws follow from the invariance of the 
theory under  the isometries of  the M 4 factor of  the space H. 

Our attempt to construct a description of fundamental interactions 
based on these assumptions is based on the following general strategy: 

(1) Only the mathematical structures closely related to the natural 
geometric structures of the space H will be used to build the theory and 
the mere hypothesis " X 4 c  H "  should fix the quantum theory uniquely. 

(2) We try to derive the consequences of the basic assumptions in their 
full generality without imposing any ad hoc restrictions, say, on the topology 
of  the "al lowed" space-times. 

2.2. The Analogy Between Color and Gravitational Interactions 

The assumption that the isometrics of H are symmetries of the theory 
implies a number of new, probably exact, conservation laws associated with 
the isometrics of the space S. Perhaps the most natural identification of 
these symmetries is as color symmetries. 

To our best knowledge, the space CP2, the complex projective space 
of four real dimensions (Eguchi et al., 1980; Gibbons and Pope, 1978; 
Hawking and Pope, 1978), is the lowest-dimensional space having SU(3) 
as its isometry group [strictly speaking; the isometry group of CP2 is 
SU(3) /Z3,  not SU(3)].  We shall later show that this choice of S indeed 
seems to be realistic. 

The proposed physical identification of the S isometries suggests a 
deep connection between color and gravitational interactions deriving from 
the assumption that both interactions couple to the isometry charges. Taking 
the idea of  the color gravitational analogy seriously one can (1) identify 
the gluonic field variables as quantities closely related to the metric of X 4 
and (2) derive a relationship between color and gravitational couplings. 
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Consider first the identification of the  gluonic field variables. There 
are quite general requirements, which should be taken into account in the 
construction of these quantities. Gluonic fields should (1) be invariant under 
the general coordinate transformations of  the spaces X 4 and H and (2) 
define a linear representation for the isometries of the space H. 

Field quantities with the required properties are however obtained by 
contracting the metric tensor g~t3 with the projections 

j A = j A k h l  hk ' (2) 

of the infinitesimal generators jA of the isometries: 

8h k = e j  Ak (3) 

to obtain 

gAB ~o~,8;A;B 
= s J - J #  (4)  

To see that the quantities gAB have the required properties consider first 
the case that both jA and jB generate translations in M 4. In standard 
Minkowski coordinates m A for M 4 one has 

gAB = ot[3 ~ A  ~ B  
s , , ,1~,,,1~ (5) 

Using Minkowski coordinates also for X 4 (this is possible if X 4 in regions 
of X 4 representable as a graph for a map M4-> S) so that the condition 
mlA~ = 8 3 holds, the components of gAB reduce to the components of the 
metric tensor numerically and deserve an interpretation as the components 
of  the gravitational field (in perturbative approach to GRT the field strengths 
are closely related to the components of the metric in coordinates, which 
reduce to Minkowski coordinates in the limit G ~ 0). 

When, say, jA generates translations in M 4 and jB generates an SU(3) 
isometry one obtains a quantity transforming as M 4 vector and color octet. 
The identification as gluon field is suggestive. 

When b o t h j  A a n d p  generate isometrics of S one obtains a Minkowski 
scalar transforming as a symmetrized product  of two color octets: 

(8| = 270) 8 0  1 (6) 

The gluonic field variables are analogous to the gauge fields of the Kaluza- 
Klein theories, which are also closely related to the componets of  an 
appropriate metric. In fact, under the general coordinate transformations 
of  H having the following infinitesimal form, 

t~S k = Ta(h)j Ak, tSm k = 0 (7a) 

and thus resembling local color rotations, the projections of  the color 
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currents transform according to the formula 

�9 A z "~A  "B , ' r 'C  "t- " A k .  r B (7b) ~j~ = J JBk 1~ b ~cJ u l 

Here the quantities c A c  are the structure constants of SU(3) Lie algebra. 
Thus the transformation law of  gtuonic fields under local color rotations 
resembles that associated with ordinary gauge fields. 

To find the relationship between color and gravitational couplings we 
start by writing the Coulombic interaction energy between two colored 
objects 

V(r) = - G(~I. Q2/r = c%~ 1 �9 g/a/r (8) 

Here ()i are dimensional color charges analogous to four momenta and 
related to the ordinary dimensionless color charges qi via the equation 

Q. = ( a /  R)gl (9) 

Here R is the length scale of S: in the case of CP2 R is fixed by the 
requirement that CP: geodesics have length 

L =  wR (10) 

and a is some numerical constant to be determined. 
The determination of the constant a is based on a very simple idea. 

We merely generalize the representation of the mass squared operator as 
the d'Alambertian of  M 4 (m 2= - D )  so that one obtains 

Q. Q = - V ~  (11) 

This is indeed reasonable in the case of CP2 since the eigenvalues of the 
CP2 Laplacian are proportional to those of the Casimir operator q" 0 of 
SU(3) (Hawking and Pope, 1978) 

Q. Q =-a2c~- q (12) 

so that one has 

a = 2 / R  (13) 

Thus the relationship between color and gravitational couplings strengths 
is given by 

as = 4 G / R  2 (14) 

A crucial step in the above argument is the proportionality between the 
C P  2 Laplacian and Casimir operator of SU(3). This relationship does not 
hold for all spaces having SU(3) as isometry group (example ~,3) and it 
would be interesting to know whether there are any other spaces than CP2 
with this property. 
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Of course, one might argue that the dimensional coupling associated 
with gravitational interactions associated with M 4 and CP2 factors need 
not be the same at long length scales so that the result obtained should 
hold only at short enough length scales in accordance with the generally 
accepted picture that the renormalized color coupling becomes infinite at 
some hadronic length scale. It turns out however that the divergence of  the 
color coupling does not seem to be necessary for the understanding of the 
color confinement in TGD approach. 

2.3. Induction Procedure 

In the case of  the metric the induction procedure means the restriction 
of the line element of the space H to the surface X. From the formula 
defining the induced metric it is clear that the induction procedure for the 
various tensor quantities in practice means that they are projected to the 
surface in question. 

For a Yang-Mills connection A defined in H, the induction procedure 
means that the parallel translation in X 4 is performed using the connection 
A or equivalently: 

A~ = Akhk,~ (15) 

The most promising candidate for the connection to be induced is the spinor 
connection of  the space H, which is defined uniquely for simply connected 
spaces from the requirement that gamma matrices are covariantly constant 
quantities (Shanahan, 1978) and is given in terms of vielbein ek A (Eguchi 
et al., 1980) by 

Vk = Dke'~ e ~  ~ (16) 

Here Dk denotes the ordinary covariant derivative defined by the standard 
metric connection of H. The spin matrices are proportional to the commu- 
tators of the flat space gamma matrices (see Notations). 

The curvature form of  the induced Yang-Mills connection is given by 

Vo, t3 = Vk~hl,~hlt3k l (17a) 

Vkt = (1/2)Rkt,..E m" (17b) 

Here the tensor Rk~m. is the curvature tensor of  the space H ;  Yang-Mills 
interactions thus reflect the nonflatness of  the space H. 

The gauge group of the vielbein connection is for the generic space H 
with one timelike direction the noncompact group SO(dim H -  1, 1), but 
reduces to the group SO(dim S) for the product  decomposition H = M 4 x S. 
Hence the pathologies associated with noncompact  gauge groups afford the 
"reason why" for the otherwise rather ad hoc choice H = M 4 )< S. 
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Accepting the proposed identification of  the color interactions the 
identification of the components of the induced spinor connection as elec- 
troweak gauge potentials becomes natural. In fact, it turns out that the 
generalized spinor connection of the space CP2 provides gauge potentials 
with correct electroweak properties. 

In order to induce spinor structure assume that the space H itself 
allows spinor structure (not true, when H is for instance nonorientable) so 
that the space H allows globally defined gamma matrices satisfying the 
anticommutation relations 

{Fk, F~} = 2hkz (18) 

The gamma matrices in a submanifold X 4 of H are defined as the projections 
of the gamma matrices of H 

F~ = h~Fk  (19) 

The obvious requirement 

{F~, F~} = 2g~, (20) 

stating that the induced gamma matrices generate a Clifford algebra, is 
satisfied. 

For the spinors themselves the induction procedure means simply 
restriction to the submanifold X. The chirality (handedness) concept gen- 
eralizes; the spinors of H carry H-chirality +1 provided space H is even 
dimensional (Shanahan, 1978). For the spaces containing M 4 as a 
Cartesian factor also the definition of the ordinary M 4 handedness (and 
also of S-handedness, if S is even dimensional) is possible. 

It turns out that the notion of the chiral invariance generalizes; in its 
generalized form the chiral invariance implies the existence of  two separately 
conserved fermion numbers corresponding to two H chiralities. One could 
identify these as baryon and lepton numbers respectively but this is not 
necessary as it turns out. 

The ordinary chiral invariance characteristic to gauge theories (some- 
what troublesome since it is not a symmetry of  Nature) is lost. The loss is 
due to the compactness of the space S, which introduces a natural length 
scale into the theory. 

Two important features distinguishing between the induced spinor 
structure and conventional spinor structure should be mentioned. First, the 
induced spinor structure is defined for all submanifold topologies unlike 
the ordinary one, which, for example, fails to be well defined for nonorient- 
able manifolds. 

Second, the induced gamma matrices are not covariantly constant: 

D~F o = H~oFk (21) 
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Here the quantities 

H~t~ = Dchf~ (22) 

are the components of the so called second fundamental form associated 
with the submanifold X 4 (see Notations). 

This property implies the presence of a "mass term" in the generalized 
Dirac equation obtained by extremizing the chirally invariant (in generalized 
sense) Dirac action as will be found later. The mass term resembles the 
Higgs term and the Higgs field is closely related to the CP2 part of  the 
second fundamental form. 

2.4. Stringlike Objects and the Generalization of Space-Time and Particle 
Concepts 

Stringlike objects appear as extremals of practically any action con- 
structable from local invariants of space X 4. Stringlike objects are typically 
surfaces X 4= X 2 •  2, where X 2 is a minimal surface in M 4 and S 2 a 
so-called geodesic submanifold of S (Helgason, 1978) having vanishing 
second fundamental form (S is expected to have size of  the order of Planck 
length). Since the orbit of  the string in various string models (Nambu, 1970; 
Jacob, 1974; Anderson et al., 1983) is classically a minimal surface the 
identification of the stringlike objects a s T G D  counter parts of the hadronic 
strings seems natural. 

Accepting this identification one is led to a generalization of the 
ordinary string model (Nambu, 1970; Jacob, 1974; Anderson et al., 1983). 
The counterpart  of  the assumption "Quarks reside at the ends of the string" 
is the following assumption: 

(1) The boundary components of the 3-manifold are carriers of quark 
like, and more generally, fermionic and possibly also bosonic quantum 
numbers. 

This assumption has served as our guideline for a long time. It has 
however turned out that the localization of the quantum numbers on the 
boundaries of  the 3-manifold is not necessary and the assumption can be 
replaced with the following milder one: 

(1') Quarks and also other elementary particles correspond to 3-mani- 
folds with a single boundary component, which are very small in the length 
scale determined by the hadronic string. 

The boundary components are closed two-dimensional manifolds and 
thus can have several nonequivalent topologies. The orientable, closed 
2-manifolds are classified by the so-called genus, which tells how many 
handles must be attached to a 2-sphere in order to obtain the manifold in 
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question (torus is obtained by adding one handle, etc.). Thus drilling g 
wormholes starting from and ending at the spherical boundary component, 
one obtains a boundary component carrying a topological quantum 
number g 

The idea that g is responsible for the family replication phenomenon 
(Fritch and Minkowski, 1981) of quarks and leptons seems natural. Above 
all so because the different fermion families seem to behave identically with 
respect to known interactions; this behavior is to be expected if the family 
degeneracy has the proposed origin. 

The simplest model for quark/lepton would be a small piece of 
Minkowski 3-space having naturally an exterior boundary. In the ground 
state (particles of the lowest generation) boundary has the topology of 
sphere; topological excitations are obtained by drilling wormholes on the 
boundary. The size of this manifold is expected to be very small as compared 
with the size of, say, hadron. 

Accepting the genus generation correspondence and either the assump- 
tion (1) and (1') one is led to two alternative descriptions of a hadron: 

(2) Hadron is a 3-surface obtained by drilling an arbitrary number of 
holes with various boundary topologies to the string of type D 1 x y2 and 
by adding appropriate quantum numbers to the resulting boundary com- 
ponents in order to obtain valence quarks and the sea particles. 

(2') Hadron is obtained by "gluing,' an arbitrary number of quarklike 
and gluonic 3-manifolds to the stringlike object having length large as 
compared with the size of elementary particle 3-manifolds. The gluing 
operation corresponds to the formation of the so-called connected sum 
(drill holes D n to the n-dimensional summands and connect the boundaries 
S n-I of the holes by a cylinder D 1 xS"-a). 

In either case we have a natural descripton for the valence quarks and 
the sea. 

It should be noticed that in the scenario (2') the family replication 
phenomenon might be related to the topological degrees of freedom associ- 
ated with the interior of elementary particle 3-manifold. The roughest 
classification for the interior topology is in terms of handles ["wormholes" 
of Wheeler (Adler et al., 1975)] and the number of interior handles might 
equally well label the various particle families. Whether the family replica- 
tion phenomenon is related to the number of interior or boundary handles, 
is at this stage an open question; personally we prefer the explanation based 
on boundary topology. 

Summarizing, if a topological explanation of the generation degeneracy 
is accepted, an amazingly simple scenario for understanding the basic 
interactions and particle spectroscopy suggests itself. 

(1) Unification takes place at the level of a single particle generation. 
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(2) Electroweak interactions are the only gauge interactions and the 
corresponding gauge potentials are induced from the spinor connection of 
the space H. 

(3) Color  gravitational interactions are the interactions coupling to the 
isometry charges of the space/4.  

3. T O P O L O G I C A L  CONSIDERATIONS 

3.1. Topological Particle Classification 

The coarsest topological particle classification is based on the topology 
of the boundary of the 3-manifold identified as a free particle (only the 
simplest topologies are expected to correspond to particles in the usual 
sense of  the word). The boundary is specified topologically by the number 
of the boundary components N and by the topology of the individual 
boundary components. 

For orientable 3-manifolds only orientable boundary components are 
possible and therefore the topology of a single boundary component  is 
specified by its genus. In the "nonorientable category" also nonorientable 
boundary components are possible. Any nonorientable boundaryless 2- 
manifold is a connected sum of n projective spheres (Wallace, 1968) 

X 2 =  p2:~p2. . . g p 2 ~  npa (23) 

The connected sum of two n manifolds is obtained by drilling holes D" to 
the "summands"  and by joining the resulting boundary components S n-1 
by a tube D 1 x S n-1. It is a result of two-dimensional cobordism (Wallace, 
1968) that the boundary of any 3-manifold can be expressed in the form 

where B is a disjoint union of orientable 2-manifolds and in the latter union 
the constraint 

~;nk = 0 rood 2 (25) 

is satisfied. Loosely speaking: the boundary contains even number of projec- 
tive spheres. 

A finer classification takes into account also the interior topology. The 
number of  handles ("wormholes")  serves as a rough classificational tool 
for the interior topologies of X 3 (Wallace, 1968). 

The topology of the space H can also contribute to the particle classifi- 
cation. When the second homology group H 2 ( H )  (Hilton and Wiley, 1966) 
is nontrivial one can characterize each boundary component of  X 3 by an 
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element of H2(H),  which we shall call homology charge. By the very 
definition of  the concept the total homology charge vanishes for all 3- 
manifolds. 

The concept of the homology charge is different in the orientable and 
nonorientable categories; the reason is that in the nonorientabie category 
the sign of  the homology charge is not defined. For the space M 4 • CP2, 
the group in question is isomorphic to the group Z of integers and to two 
element group Z2 in orientable and nonorientable categories, respectively. 
The identification of the homology charge as magnetic charge turns out to 
be possible and the condition 

Znk = 0 mod 2 

states that no free magnetic monopoles exist. 

(26) 

3.2. Topological Description of Particle Reactions 

The identification of free particles as compact 3-manifolds not only 
implies a topological particle classification but also a topological description 
of particle reactions. In this section we therefore address ourselves to the 
question "How does the dual diagrammatics of the string model generalize ?" 

We are interested in the "basic vertices" for the particle reactions 
described as topology changes and in possible topological selection rules. 
We base our approach on an intuitive idea that any particle state corresponds 
to a set of spacelike 3-manifolds imbedded in some spacelike (dim H -  1) 
manifold of  H. The problem can be stated in more mathematical terms as 
follows: 

Given two three-dimensional spacelike submanifolds X,  3. and X} in 
an (dim H - 1 ) - d i m e n s i o n a l  spacelike submanifolds Hi and Hy, respec- 
tively, is it possible to find a causal (having locally Minkowskian metric) 
submanifold X,~ having X 3 and X} as spacelike boundaries so that the 
4-manifold in question mediates a transition between the initial and final 
states ? 

Can one decompose the transition into more elementary ones? Which 
are the "basic vertices" and are there any selection rules of  a purely 
topological origin? 

This kind of problem is known as a cobordism problem in topology 
(Wallace, 1968; Milnor, 1965; Thom, 1954). 

It is useful to divide the possible particle reactions into the following 
basic types: 

(1) The changes in the purely internal topology of the 3-manifold; the 
number of  the components of X 3 and the boundary topology remain 
unchanged. 
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(2) The reactions changing the particle number defined as the number 
of components of X 3 (only the simplest 3-topologies are expected to 
correspond to particles in the ordinary sense). 

(3) The transitions involving a change in the boundary topology; either 
the topology of a single boundary component is changed or the number of 
the boundary components is changed. 

3.2.1. Changes in the Internal Topology 

Since the topology of the boundary is unchanged in these reactions it 
is reasonable to restrict the consideration to the cobordism of the closed 
(boundaryless) 3-manifolds. One obtains a rough idea about what is involved 
by observing that the problem reduces to a homology problem (Hilton and 
Wiley, 1966) if one gives up the requirement that the surfaces are manifolds, 
i.e., they can for instance intersect themselves. The selection rules for the 
homology result from the nontriviality of the third homology group of H, 
which is trivial for example for the space H = M 4 • CP2. 

Therefore the possible selection rules result from the requirement that 
the intermediate surface is a manifold: both the internal topology of the 
manifold and the finite dimension of the imbedding space can in principle 
lead to selection rules. It is however known that the so-called abstract 
cobordism (no imbedding assumed) is trivial for 3-manifolds (Wallace, 
1968; Milnor, 1965; Thom, 1954). The conclusion is that the possible 
selection rules result from the finite dimension of the imbedding space (the 
requirement of causality might also set restrictions on the cobordism). 

The problem of constructing basic vertices for these changes is solved 
(Wallace, 1968; Milnor, 1965). The characteristic property of the vertices 
is the tocalizability of the topology change; the change takes place via an 
intermediate 3-space, which fails to be a manifold at a single point (in the 
generic case). The transition from the topology of torus to that of a sphere 
serves as a simple two-dimensional illustration of this property. 

3.2.2. Reactions Changing Particle Number 

There are three basic vertices corresponding to change in particle 
number. We shall refer to these vertices as (1) connected sum ($), (2) 
boundary connected sum (~B), and (3) fusion (~q) vertex, respectively. 

Connected sum vertex ($) is a generalization of the "trouser" vertex 
of the string model. The "reactants" merge together at a point common to 
their interiors. This vertex is the only vertex leading to a change of the 
component number of n-manifold in the cobordism of closed n-manifolds 
(Wallace, 1968). 
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Boundary connected sum (~B) vertex corresponds to a process, where 
two 3-manifolds join along their boundary components. Since this vertex 
is not completely local one might ask whether this vertex is "generic" and 
thus whether it has any significant dynamical role in three-dimensional cases. 

The diagrams obtained using ~ and SB vertices correspond to diagrams 
encountered already in the ordinary string model. The homological triviality 
of the leptonic boundary components explains why they do not participate 
in those strong interactions, which correspond to the joining of the strings 
along their ends. 

The fusion (Lq) vertex of two 3-manifolds at a point common to their 
boundaries (common to interiors in $ vertex) is a vertex having no counter- 
part in the ordinary string model. The fusion of the liquid droplets described 
as manifolds with a spherical boundary proceeds via this vertex. Clearly, 
the handle number and the homology charge are conserved in this vertex. 
It is attractive to identify this vertex as responsible for the emission and 
absorption of elementary particles (gauge boson, leptons, ...). 

3.2.3. Reactions Changing the Boundary Topology 

The reactions changing the boundary topology can be described by 
suitably generalizing the vertices already found. 

For boundary components belonging to same 3-manifold SB vertex 
leads to the quark annihilation diagram forbidden by the so-called OZI 
rule (Chew and Rosenzweig, 1978); the nonlocal nature of ~B vertex might 
explain this rule. 

The ~ vertex generalized so that the boundary components belong to 
same 3-manifold leads to a change in the number of boundary components. 
The local equivalence of ordinary and "internal" ~ vertices suggests that 
the decay of, say, a hadronic boundary component via the internal ~ vertex 
corresponds physically to the emission of a "sea particle." 

We can generalize the ~ vertex even further by assuming that the two 
regions belonging to same boundary component merge together at a common 
point. Since the genus of the boundary component changes in this transition 
by one unit, a natural expectation is that it is this transition, which is 
responsible for the various mixing phenomena [Cabibbo and neutrino 
mixings (Kobayashi and Maskawa, 1973; Bilenki and Pontocorvo, 1978)]. 
An interesting question is, whether the Ag = 1 nature of this transition could 
lead to any experimentally verifiable predictions concerning the nature of, 
say, Cabibbo mixing. 

Concluding, we have found that three basic vertices for the cobordism 
of the 3-manifolds (not taking into account the vertices changing the interior 
topology, but not the component number of 3-manifold). The vertices 
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and possibly also ~B might be the vertices responsible for the various 
reactions between elementary particles; this is certainly the case if elemen- 
tary particle quantum numbers reside on the boundaries. 

3.3. Classical 3-Space as a Topological Many-Particle Phenomenon 

The proposed generalization of the space-time and particle concepts 
is rather radical, and, one could well argue, in contradiction with everyday 
experience. We however think that this need not be the case. 

Consider first what one understands with the notion of the classical 
space-time in different contexts. The particle physicist in practice identifies 
the classical space-time as the empty Minkowski space, which via its 
symmetries is responsible for the basic conservation laws. It should be 
obvious that the space H corresponds to the generalization of the particle 
physicist's conception of the space-time, making possible, as we hope, to 
understand all elementary particle characteristics in terms of  geometry and 
topology. 

In various applications of  GRT, such as cosmology, the space-time (or 
rather 3-space) is understood as a dynamical object and it is natural to 
define it as an extremal of some suitably defined effective action in accord- 
ance with the basic ideas of the quantum theory. It is however not at all 
obvious that surfaces with those properties, which we believe to be charac- 
teristic to the space-time of general relativity should have so marked a 
dynamical role as the everyday experience suggests. 

Thus it is natural to seek a mechanism, which would in some sense 
generate the classical space-time. In this respect the following observations 
are crucial. 

(1) Any classical action is expected to allow extremals representable 
as a graph for some map M 4 ~  S (simplest example: imbedding of  M 4 as 
the surface M 4 • where s is some point of S). The properties of these 
surfaces are in accordance with the conventional notion of space-time. 

(2) The spaces H having dimension d < 9 are exceptional in the sense 
that the intersection of two 4-surfaces is stable under  small perturbations 
of the surfaces. This property can be understood by using for the surfaces 
in question the representation 

f k = 0 ,  k = l , . . . ,  d - 4  

where fk are some functions defined in H. 
The first observation raises the question "What  happens for a particle 

like 3-manifold in the presence of the 'vacuon' that is 3-surface representable 
as graph and having macroscopic size?" It is the second observation, which 
suggests a possible answer to this question. 
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What we believe to happen is that the particle "collides" with the 
vacuon with a high probability and that under certain conditions the 
connected sum of the particle and of the vacuon is formed. A convenient 
visualization of the situation is obtained by considering the motion of a 
particlelike 2-surface in the presence of a 2-piane in a finite volume of 
Euclidian 3-space. 

The observations just made suggest that the classical space-time with 
matter is in a certain sense a topological many-particle phenomenon, which 
we call hereafter "~ condensation": in presence in the vacuon the transition 

particle w vacuon-~ particle ~ vacuon 

occurs with a high probability provided that the condition "dim H < 9" is 
satisfied. As a consequence we obtain something, which might be called 
"classical space-time with matter": matter being presented as topological 
inhomogeneities glued to the topologically trivial background. 

What we have obtained is of course not yet the topologically trivial 
space-time of  GRT. It is however intuitively clear that the classical space- 
time of GRT is obtained, when one defines the classical space-time as a 
length-scale-dependent concept. The classical space-time in length scale L 
is by definition topologically trivial in length scales smaller than L and is 
an extremal of some length-scale-dependent effective action. 

The S-condensed matter corresponds to topological inhomogeneities 
of  size smaller (!) than L. Because these inhomogeneities are pointlike in 
the length scale considered we expect them to be representable using 
continuous mass, c h a r g e . . ,  distributions defined in the "classical space-time 
in length scale L." 

We shall return to a more precise formulation of the concept of the 
classical space-time as a length-scale-dependent concept in the second paper 
of the series. 

Some further remarks concerning the g-condensation phenomenon are 
in order. First, the identification of the $ condensate as a many-particle 
bound state is attractive since it would provide a general topological descrip- 
tion of bound states applying to macroscopic gravitationally bound states 
as well as to molecules, atoms, and nuclei. Even hadrons might be under- 
stood as quark-gluon ~ condensates around the hadronic strings (or possibly 
bags depending on the length scale used in the description). 

Second, if this interpretation is correct one expects that the reverse 
phenomenon ("g evaporation") occurs if the binding energy of the particle 
in condensate is too small. Thus in temperatures of the order of the binding 
energy of the particle "~ evaporation" should occur. Finally, one must take 
in the description of  matter into account bo th  the g-condensed phase and 
the "vapor"  phase. We shall return to this subject in the second paper of 
the series. 
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4. CHOICE OF THE SPACE H 

In this section we shall consider the problem of finding a realistic 
candidate for the space H. We study the various constraints, which the 
space H should satisfy and show that the space H = V • CP2, where V 
denotes Minkowski space or its light cone is a respectable candidate. 

4.1. Constraints on the Choice of the Space H 

In order to attack the problem of finding a realistic candidate for the 
space H let us first recall some basic ideas of  TG D  approach. 

(1) The gauge group of the spinor connection is compact. 
This requirement favors strongly the product  composition H = V • S, 

where V is flat. 
(2) Poincar6 invariance is exact. 
The choice H = M 4 • S guarantees the exact Poincar6 invariance. The 

alternative choice H = M 4 • S, where M~ is in the light cone of  Minkowski 
space, realizes Poincar6 invariance in noncosmological scales. This alterna- 
tive must be considered seriously since big bang cosmologies reduce to M 4 
in the limit of vanishing mass density as can be seen from the expression 
for the line element of M4: 

ds  2 = d a  2 - a 2 ( d r 2 / ( 1  + r 2)  + r 2 d122) (27) 

Here the coordinates (a, r, 0, 4)) are related to the standard spherical coor- 
dinates (m ~ rM, 0, oh) of M 4 via the equations 

a 2 = (m~ 2 - r 2 
(28) 

r a  : -  r M 

Clearly, this choice makes the big bang cosmology a necessity. 
(3) Free particle corresponds to a compact 3-manifold. 
This generalization of the particle concept leads to a topological expla- 

nation for the family replication phenomenon.  The hypothesis that various 
boundary component  topologies correspond to different elementary particle 
generations, "generation genus correspondence," nicely explains the iden- 
tical properties of the various fermion generations with respect to the 
fundamental interactions. 

Furthermore, this hypothesis simplifies decisively the task of finding 
realistic candidates for the space H ;  the remaining quantum numbers are 
(besides mass and spin) baryon and lepton numbers (or perhaps a suitable 
combination of them), color and electroweak quantum numbers. 

(4) Color symmetries correspond to the isometries of  the space S. 
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This identification is natural since color and Poincar6 symmetries are 
believed to be exact. Moreover, it implies a deep relationship between color 
and gravitational interactions. The space CP2, the complex projective space 
is to our best knowledge the lowest-dimensional space having SU(3)/Z3 
as its isometry group. 

(5) The spinor connection of the space S (defined almost uniquely by 
the metric of  S) defines Yang-Mills gauge potentials on the surface X 4 via 
the induction procedure. It is natural to identify these field quantities as 
gauge potentials. 

Since the spinors of 2N-dimensional space have 2N-1+2 N-~ com- 
ponents corresponding to two different chiralities (Anderson et al., 1983) 
it is tempting to identify the spinors with different chiralities as quark- and 
leptonlike spinors, respectively. The chiral invariance, which has a somewhat 
problematic nature in the conventional gauge theories would in its general- 
ized form account for the conservation of baryon and lepton numbers. The 
separate conservation of  baryon and lepton numbers is however not a 
necessary outcome of the TGD approach as will be found in the sequel. 

In the case of CP2 the spinors with definite H chirality have eight 
components each. Assuming that the right-handed neutrinos do exist, this 
number equals to the number of electroweak degrees of freedom inside a 
single fermionic generation. 

Clearly, the color quantum numbers cannot be spinlike as in QCD but 
rather resemble angular momentum. That is, the colored fermions corre- 
spond to nontrivial partial waves in the partial wave expansion of the spinor 
field in H. 

Thus CP2 appears to be a promising candidate for the space S. There 
are however some serious problems. 

(1) The presently known leptons/quarks are color singlets/triplets and 
thus satisfy the triality rule: 

Qem ~--- t/3 rood integer [t is the SU(3) triality] 

How can one understand this rule? How are the t r 0 states even possible 
[recall that the isometry group of CP2 is SU(3)/Z3]? 

(2) The right-handed neutrinos should effectively decouple from the 
electroweak interactions. 

(3) The vielbein group of CP2 is SO(4) = SU(2)I x SU(2) .  where the 
labels refer to CP2 chiralities. For a fixed H chirality these labels correspond 
to M 4 chiralities. It is clear that the vielbein group cannot contain the 
electroweak gauge group SU(2)L • U(1) as its subgroup; the U(1) factor 
is missing. And last but not least: 

(4) CP2 does not allow any spinor structure! 
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This list of problems is rather impressive. It turns out, however, that 
the Kahler structure of CP2 (Eguchi et al., 1980; Gibbons and Pope, 1978; 
Hawking and Pope, 1978), which implies the existence of a covariantly 
constant 2-form and the associated U(1) gauge potential, provides a solution 
to the purely mathematical problem (4) and also to the other problems. 

4.2. Basic Properties of CP2 

4.2.1. CP 2 as a Manifold 

CP2, the complex projective 2-space is defined by identifying the points 
of the complex 3-space ~,3 under the equivalence 

(2 "1, Z 2, Z 3) ~ ,~(Z 1, Z 2, Z 3) (29) 

Here ~ is any nonzero complex number. The pair z i / z  ~ for a fixed j and 
z j ~ 0 defines a complex coordinate chart for CP 2. As j runs from 1 to 3 
one obtains an atlas of three charts covering CP2, the charts being 
holomorphically related to each other (e.g., CP2 is a complex manifold). 
The points z 3 r 0 form a subset of CP2 homeomorphic  to R 4 and the points 
with z 3= 0 a set homeomorphic  to CP1 = S 2. Therefore CP2 is obtained 
f r o m  R 4 by "adding the 2-sphere at infinity." 

Besides the complex coordinates ~i = z i / z  3, i = 1, 2, the coordinates of 
Eguchi and Freund (Eguchi et al., 1980; Gibbons and Pope, 1978) will be 
used and their relation to the complex coordinates is given by 

~ = z + it 
(30) 

~2=x+iy 

These are related to "spherical" coordinates via the equations 

~:'= r e x p ( i ( 0 +  ~6)/2] cos(0/2)  
(31) 

~:2= r e x p [ i ( 0 -  ~b)/2] sin(0/2) 

The ranges of the variables r, 0, ~b, and 0 are [0, oe], [0, 7r], [0, 47r], and 
[0, 2~r], respectively. 

Considered as a real four-dimensional manifold CP2 is compact and 
simply connected, with Euler number 3, Pontryagin number 3, and second 
Betti number b = 1. The last property stems from the fact that the second 
homology group H2(CP2) is isomorphic to integers. 

4.2.2. Metric and Kahler Structures of CP2 

In order to obtain a natural metric for CP2 observe that CP2 can be 
thought as a set of the orbits of the isometrics zi-~ exp(ia)z i on the sphere 
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$5: s 2= R 2. The metr ic  o f  CP 2 is ob t a ined  by p ro jec t ing  the met r ic  of  

S 5 o r t hogona l l y  to the orbits .  There fore  the  d i s tance  be tween  the po in ts  o f  

CP2 is tha t  be tween  the represen ta t ive  orbi ts  o f  S s. The  l ine e lement  has 
the  fo l lowing  form in the  complex  coord ina te s  

ds  ~ = go~ d e  ~ d~ G (32) 

where  the  H e r m i t i a n  met r ic  ga~ is def ined by  

g,~= R~,,o5 In F (33) 

The quan t i t y  F is def ined  as 

F = 1 + r 2 (34) 

A n  expl ic i t  r ep re sen t a t i on  o f  the metr ic  is given by  

ds 2 / R 2 = (dr 2 + r20.2)/F + r2(0 ~ q- o -2) /F  2 (3 5) 

where  the  quant i t ies  ~r~ are  def ined as 

r200, = Im(~ :1 d~ :2 - s e2 d~:l), r2o'2 = - R e ( s  ~' d~ :2 - s c2 d~ ' )  

r2o. 3 = - I m ( s  k d(.k ) (36) 

The  v ie rbe in  forms,  which  sat isfy the def ining re la t ion  

Ski = R2 eA eal (37) 
are given by  

e ~ = dr /F,  e I = r00,/~/-i ~ 
(38) 

e2=  ro.2/~/-F, e3= rcr3/ F 

The v ie rbe in  connec t ion  sat isfying the def ining re la t ion  

de A = - V A ^ e B (39) 

is given by  

V01 = -e l~r ,  V23 -- e l / r  

V02 = - e2/r,  V31 = e2/r (40) 

V o 3 = ( r - 1 / r ) e  3, V12=(2r+ l / r ) e  3 

The r ep re sen ta t i ons  o f  the  curvature  ( c o m p o n e n t s  o f  the curvature  t ensor  
in the  v ie lbe in  bas is)  are cons tan t  reflecting the fact  CP2 is a cons tan t  
curva ture  space :  

Rol = e ~ A e I -- e 2 A e 3, R23 = - e  ~ ̂  e I + e 2 ̂  e 3 

Ro2=e~ Ae2--ea Ael ,  R a l = - e ~  (41) 

R o a = 4 e ~  2, R 1 2 = 2 e ~  ~ 
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The metric defines a real, covariantly constant and therefore closed 
2-form J 

J = -iga6 d~ a ^ d~ b (42) 

Because J is dosed ,  CP2 by definition is a Kahler  manifold. The Kahler  
form J defines in CP2 a symplectic structure because it satisfies 

k l k 
Jt  Jm = --~rn (43) 

The form 2J  is integer valued and by its covariant constancy satisfies free 
Maxwell equations. Hence it can be regarded as a curvature form of a U(1) 
gauge potential  B carrying a magnetic charge of unit 1/2g (g denotes the 
gauge coupling). Locally one has therefore 

J = dB (44) 

where B is the so-called Kahler  potential. 
It should be noticed that the magnetic flux of J through a 2-surface in 

CP2 is proport ional  to its homology equivalence class, which is integer 
valued. The explicit representation of J and B are given by 

B = 2re 3 
(45) 

J =  2(e~ e 3 + e  1 A e 2) 

The vielbein curvature form and Kahler form are that in complex coordinates 
are covariantly constant and in complex coordinates they have only com- 
ponents of  type Vaa = -Vsa and JaG = -J~a, respectively ("Cab = Ve5 = 0 and 
Jab = Ja5 = 0). These properties turn out to be of  central importance in the 
sequel. 

4.2.3. Spinors in CP2 

As Hawking has shown (Hawking and Pope, 1978), CP2 does not allow 
spinor structure in conventional sense However,  the coupling of the spinors 
to a half  odd multiple of  the Kahler  connection leads to a respectable spinor 
structure. Because the delicacies associated with the spinor structure of  CP 2 

play a fundamental  role in the construction of  the proposed theoretical 
f ramework we repeat the arguments of  Hawking here. 

To see how space can fail to have an ordinary spinor structure consider 
the parallel t ransport  of  the vierbein in a simply connected space M. The 
parallel propagat ion around a closed curve with a base point x leads to a 
rotated vierbein at x :  e A --  RAe  B and one can associate to each closed path 
an element of  SO(4). 

Consider now a one-parameter  family of  closed curves y(v):  v c (0, 1) 
with the same base point x and y(0) and y(1) trivial paths. Clearly these 
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paths define a sphere S: in M and the elements RA(v) define a closed path 
in SO(4). When the sphere S 2 is contractible to a point e.g., homologically 
trivial the path in SO(4) is also contractible to a point and therefore 
represents a trivial elements of the homotopy group [SO(4)] = Z2. However, 
for homologically nontrivial 2-surface S 2 the associated path in SO(4) can 
be homotopically nontrivial and therefore corresponds to nonclosed path 
in the covering group Spin (4) (leading from the matrix 1 to -1  in the 
matrix representation). Assume this is the case. 

Assume now that the space allows a spinor structure. Then we can 
parallely propagate also spinors and by the above construction associate a 
closed path of Spin (4) to the surface S 2. Now, however this path corre- 
sponds to a lift of  the corresponding SO(4) path and cannot be closed. 
Thus we have a contradiction. 

From the preceding argument it is clear that one could compensate the 
nonallowed -1  factor associated with the parallel transport of the spinor 
around the sphere S 2 by coupling it to a gauge potential in such a way that 
in the parallel transport the gauge potential introduces a compensating 
-1-factor.  For a U(1) gauge potential this factor is given by the exponential 
exp(i2cP), where gP is the magnetic flux through the surface. This factor has 
the value -1  provided the U(1) potential carries half odd multiple of Dirac 
charge 1/2g. In case of  CP2 the required gauge potential is half odd multiple 
of the Kahler connection B defined previously. In the case of  M 4 • CP 2 we 
can in addition couple the spinor components with different chiralities 
independently to an odd multiple of B/2. 

4.3. ELECTROWEAK COUPLINGS 

The delicacies of the spinor structure of  CP2 make it a unique candidate 
for the space S. First, the coupling of the spinors to the U(1) gauge potential 
defined by the Kahler structure provides us with the missing U(1) factor. 
Second, it is possible to couple the different H chiralities independently to 
a half odd multiple of  the Kahler potential. Thus the hopes of  obtaining a 
correct spectrum for the electromagnetic charge are considerable. In this 
section we demonstrate that the couplings of the induced spinor connection 
are indeed those of the GWS model (Weinberg, 1967; Salam, 1968; Glashow, 
1961) and in particular, that the right-handed neutrinos decouple completely 
from electroweak interactions. 

We begin by recalling that the space H allows us to define three different 
chiralities for spinors. Spinors with a fixed H, CP2 chirality (l, r) and M 4 
chirality (L, R) are defined by the condition 

F~, = e~0, e = :el (46) 
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where F denotes the matrix Ys • Ys, 1 • Ys, and Ys • 1, respectively. Clearly, 
for a fixed H chirality the M 4 and CP2 chiralities are correlated. 

The spinors with H chirality e = +1 (FI@ = e~O) could be tentatively 
identified as quark- and leptonlike spinors respectively but is not necessary. 
For spinors of definite H chirality one can perform the identification 
SO(4) = SU(2)L • SU(2)R for the vielbein part of the gauge group. 

The covariant derivatives are defined by the spinorial connection 

A = V+ (B/2)(n+l++ n_I_) (47) 

Here V and B denote the projections of  the vielbein and Kahler gauge 
potentials, respectively and le, e = + l / - - 1  projects to subspace with H 
chirality + 1 / - 1 .  The integers ne are odd from the requirement of a respect- 
able spinor structure. 

The explicit representation of  the vielbein connection V and of B is 
given by the equations 

Vol  = - e l ~ r ,  

Vo2 = - e 2 /  r, 

Vo3 = - (  r - 1 /  r)e 3, 

B = 2re 3, 

V23 = el/r 

V31 = e2/r 

V12 = (2 r+  1/r)e 3 
(48) 

The explicit representation of  the vielbein will not be needed here. 
Let us first show that the charged part of the spinor connection couples 

purely left handedly. Identifying y o and E~ as the diagonal (neutral) Lie- 
algebra generators of  SO(4) one finds that the charged part of  the connection 
is given by 

aeh = 2V2311L+2V1312L (49) 

I k  = (Xo,  - x 2 , ) / 2  

I ~  = (s - 2~13)/2 
(50) 

where we have defined 

Alh is clearly purely left-handed so that we can perform the identifications 

W +(-) = 2(e 1 (+) ie2) / r  (51) 

where W +(-) denotes the intermediate vector boson. 
Consider next the identification of  the neutral gauge bosons 3' and Z ~ 

as appropriate linear combinations of the two functionally independent 
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quantities 
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X = r e  3 

Y = e3/r 
(52) 

appearing in the neutral part of the spinor connection. We show first that 
the mere requirement "photon  couples vectorially" implies the basic coup- 
ling structure of  the GWS model leaving only the value of  the Weinberg 
angle undetermined. 

To begin with we define 

(;o)=( a 
imposing the normalization condition 

ad - bc = 1 (54) 

The physical fields 3/and Z ~ are related to ~ and z~ ~ via simple normalization 
factors. 

Expressing the neutral part of the spinor connection using these fields 
one obtains 

Ant ---- [(C + d)2~,o3 + (2d - c)2E12 + d(n+l+ + n_l_)] 

+ [ ( a - b ) 2 s  ~ (55) 

Identifying s and s = 1 • a s  vectorial and axial Lie algebra 
generators, respectively, the requirement that 3/couples vectorially leads to 
the condition 

c + d = 0 (56) 

Substituting the result to equation (3.29) one obtains for the neutral part 
of the connection the expression 

Anc= 3'Qem + Z~ I 3 -  s in2 0wQem) (57) 

Here we have defined the electromagnetic charge Q~m and the weak isospin 
by 

Qem = s (n+l+ + n_1_)/6 

13 = (s  s (58) 

The fields 3' and Z ~ are defined via the relations 

3' = 6d~ = [6 / (a  + b)](aX + bY) 
(59) 

Z ~ = 4(a + b)Z = 4(X - Y) 
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The value of the parameter 0w (Weinberg angle) is given by 

sin 20w = 3b/[2(a + b)] (60) 

Observe that right-handed neutrinos decouple completely from the elec- 
troweak interactions. 

The determination of the actual value of the Weinberg angle is a 
dynamical problem. A possible way to determine it is to express the Yang- 
Mills part of the effective (length-scale-dependent) bosonic action in terms 
of the physical fields y and Z ~ and to require that no nondiagonal terms 
of form yZ ~ appear in it. Obviously the pure Yang-Mills action leads to a 
definite value of the Weinberg angle. However, the addition of the term 
proportional to 

I = J '~J~ (61) 

where J~t~ is the projection of the Kahler form, to the effective action clearly 
changes the value of the Weinberg angle. This can be interpreted as a term 
describing the different evolution of SU(2)L and U(1) coupling constants. 
We will discuss this question in more detail in the forthcoming paper of 
the series devoted to the study of the dynamics on a semiclassical level. 

We have identified the physical field quantities in a definite gauge. The 
identification procedure is however invariant under the electroweak gauge 
group as we will now demonstrate. The invariance follows from the following 
properties of identification procedure. 

(1) The charged gauge bosons are identified as the charged left-handed 
part of the gauge field. Thus the definition of the charged part is invariant 
under SU(2)L and right-handed rotations generated by the third component 
of the right-handed isospin. 

(2) The neutral gauge bosons can be expressed in the form 

Here AL/AR is the neutral left/right-handed part of the spinor connection 

AL= (r+2/r)e3/2 
(63) 

AR = 3 re3~2 

The invariance of the definition under left-handed vielbein rotations is thus 
obvious. Since the right-handed part is proportional to the Kahler potential 
(the geometry of CP2 again!) the definition of the field quantities is also 
invariant under gauge transformations, which preserve this proportionality. 
These transformations are just the electroweak U(1) transformations gener- 
ated by a definite linear combination of the right-handed neutral isospin 
generator and of unit matrix. 
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4.4. Higgs Mechanism and SU(2)L Confinement 

The Higgs mechanism plays a crucial role in GWS model as a mechan- 
ism giving masses to the intermediate gauge bosons. Hence it is natural to 
seek for the counterpart  of the Higgs mechanism in the TGD approach. In 
this section we shall show the following: 

(1) The propagator associated with the most general chirally invariant 
spinorial action describing leptons and quarks as elementary particles con- 
tains terms having the properties of the Higgs type mass term. 

(2) Our candidate for the Higgs field indeed has correct group theoreti- 
cal properties in the sense that ordinary gauge theory describing the interac- 
tion of gauge bosons and a Higgs field with the same group theoretical 
properties leads to the same predictions as GWS model for the mass ratios 
of the electroweak gauge bosons. 

In addition we perform a transition to the so-called unitary gauge, 
where the Higgs field has no charged components,  and find out rather 
surprisingly the following: 

(3) The members inside the leptonic and quark doublets have equal 
masses unless the action contains a CP-odd term made possible by the 
Kahler structure of C P  2 and that the requirement "neutrinos are massless" 
fixes the CP-odd term uniquely. 

(4) The field quantities obtained by making the transition to the unitary 
gauge can be regarded as SU(2)L singlets of  type Higgs fermion and 
Higgs-Higgs gauge boson. This unexpected result means that in TGD 
approach the phenomena of SU(2)L confinement and symmetry breaking 
via the Higgs mechanism seem to be one and the same thing. 

Consider first the construction of the spinorial action. The most general 
spinorial action based on the assumption that both leptons and quarks are 
elementary fermions (we shall represent an alternative scenario later) is 
given by 

L =  i~[I'~(1)I) ~ - I)F~ (-/)]q,~/(-[g]) 

I',~(l) =Fk(l)hk,~ (64) 

Here the quantities Fk(1) are related to the gamma matrices of  H via the 
equations 

r - r Fk;t) = (hk+ dJk)Fr (65) 

l being a real number. Observe that herrniticity requires the appearence of 
the both values of l in the Lagrangian. 

The covariant derivative D~, is defined by the induced spinor connection 

D• = 0~, + V,~ + (B,,/2)(n+l + n_l_) (66) 
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The term V denotes the vielbein part of the spinor connection and the term 
B denotes the projection of the Kahler connection to the surface X 4. 

The Kahler structure of  CP2 makes possible the term proportional to 
the parameter / .  The CP oddness of this term will be shown in the context 
of the discrete symmetries to follow from the oddness of  the Kahler form 
under the charge conjugation, which corresponds geometrically to complex 
conjugation in CP2. 

The anticommutation relations satisfied by the "modified gamma 
matrices" are given by 

{Fk,  F1} = 2 ( m k t  + (1 - 12)Ski) (67) 

When the condition 12 = 1 is satisfied the matrix defined by the anticommu- 
tators becomes noninvertible and thus the actions satisfying this condition 
are in a mathematically distinguished position. 

By varying the generalized Dirac action with respect to the spinor 
variables one obtains something, which can be regarded as a generalization 
of the Dirac equation 

F'~D,~ = --(1/2)Hk['k xt r (68) 

The quantities H k define the trace of the second fundamental form H~o 
associated with the surface X 4. The components of the second fundamental 
form are defined as the covariant derivatives of the quantities h ~ ,  which 
as vectors of  H are parallel to the surface X4: 

H k - "'~13t-tk = g'~t3Dohk,~ (69) 
- - ,5  a* a~ 

Observe that the addition of  the CP-breaking term has only changed the 
term containing the second fundamental form (CP operation changes 
effectively the sign of  the parameter 1 in this term). 

The operator 

r~P,~ + HkFk/2  (70) 

can be identified as the inverse of the fermionic propagator in X 4. The part 
of Hk[~k involving only the gamma matrices of  CP2, which we shall denote 
by the symbol M, is given by 

~r = S A r A  = M A [ ' A  (71) 

and is a good candidate for mass matrix. The reason is that the vector S A 
transforms under the vielbein group SO(4) as a (1/2, 1/2) representation 
and thus under  SU(2)L it has the same transformation properties as the 
complex Higgs doublet of the GWS model transforming as (1/2, 0) under 
so ( g ) .  
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Consider first the group theoretical properties of our might be Higgs. 
The predictions of the GWS model for the ratio r = mw/m~ and for m v are 
both in agreement with experiment. Owing to the sensitivity of the ratio r 
to the details of the Higgs mechanism it is important to check whether the 
Higgs field transforming according to the real (1/2, 1/2) representation of  
SO(4) can in principle reproduce the predictions of the GWS model. 

To resolve this question consider the ordinary field theory in Minkowski 
space obtained by coupling (1/2, 1/2) Higgs field M to the gauge boson 
field and assign the following gauge invariant action: 

L = L, +Tr(D'~MD,~M) + V ( M )  (72) 

Here L1 denotes the pure Y M  action density. The convariant derivative 
appearing in the Higgs part of the action is defined as 

D,~M = O~M + [A~, M]  (73) 

The term V ( M )  is a self-interaction term and is assumed to have minimum 
for a nonvanishing vacuum expectation of  the Higgs field. 

A nonvanishing vacuum expectation of  S 

M -- M~ ~ + M 3 F  3 (74) 

leads to effective mass terms in the Yang-Mills part of the action. The 
photon remains massless because the mass matrix commutes with it and 
for the ratio r one obtains 

r = mw/m~ = g~,/gz (75) 

just as in the GWS model (Weinberg, 1967; Salam, 1968; Glashow, 1961) 
so that our Higgs candidate passes the first test. 

In order to obtain additional information about the properties of 
the Higgs candidate we shall perform transition to the "unitary gauge" 
(Weinberg, 1967; Salam, 1968; Glashow, 1961) defined as a gauge, where 
the Higgs field has no charged components. 

We define the mass matrix via the following decomposition: 

4 5 M r  - + + + - + + + = t~R, rML, I~L,t+ @L, IMR, r~tR, r 

M = ( s a +  ilJA)SBT5 • 3'a (76) 

The mass operator  indeed has the correct properties, i,e., it connects different 
Minkowski space chiralities of  the spinor field 41 and its conjugate q~. 

In order to perform the diagonalization we use the representation of  
the fiat space gamma matrices of  CP2 defined in the spinor basis with 
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definite CP2 chiralities. This representation is given by 

(0 (0 ;o) 
7A = iO.A 0 ] '  A = 1, 2, 3, Yo = -cro 

Here the matrices erA, A = 1, 2, 3 are the ordinary 2 x 2 Pauli spin matrices 
and O-o is the 2 x 2 unit matrix. 

In this representation the mass matrix is given by 

M+n = - M ~  = M ~  o-o- iM3o'3 
(78) 

M+L = - M ~  = M~ + iM3o'3 

The action of  the group SU(2 )L  on the spinors and on the Higgs field takes 
place via left/right multiplication by a unitary 2 x 2 matrix in this representa- 
tion. The corresponding representation of the left-hand part of  the vielbein 
connection is given by 

W L= iEABCVLcOr A --~ iwao'A (79) 

and the action of  the group SU(2)L  is given by 

V ~ U V U  + -  d U U  + (80) 

The conditions that the vielbein rotation accomplishing the transition to 
the unitary gauge must satisfy are as follows: 

(1) The definitions of  the physical gauge bosons must remain invariant. 
For the purely left-handed vierbein rotations this is certainly true. 

(2) The transformation must diagonalize the mass matrix and make it 
real. 

M + / M  + The right/left  multiplication of R/ L by the unitary matrix 

U = sAo'A/~/(SASA) 1/2 (81) 

indeed accompl ishes  this task. This transformation casts the mass matrix 
in the form + ( o )  M R  = - M Z  = (SASA) 1/2 1 + I 

0 1 1 ' 

M ~ = - M ~ = ( S A S A ) I / 2 (  1-lO 1+10 ) 

(82) 

It is clear that the presence of  the CP-breaking term in the action is necessary 
if one wants nondegenerate masses for fermions inside SU(2)L  multiplets. 
In order to obtain vanishing mass for neutrinos one must assume that the 
condition 

l =  1 (83) 

holds. 
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It is perhaps needless to emphasize the potential importance of this 
rather unexpected result; the proposed geometric Higgs mechanism 
promises to explain, not only the fermionic mass spectrum but also to give 
a first principle explanation for the phenomena of (1) the matter-antimatter 
asymmetry, made in principle possible by the CP-breaking term in the bare 
action (Yoshimura, 1978; Weinberg, 1979), (2) the CP breaking observed 
in the kaon-antikaon system (Cronin, 1981; Fitch, 1981). 

A second important result is that one can regard the field quantities 
obtained by performing the transition to the unitary gauge as SU(2)L singlets 
obtained as local composites of the spinor or gauge field and of the Higgs 
field normalized to unity. This result follows directly from the property of 
the diagonalizing Higgs gauge transformation of being linear with respect 
to the normalized Higgs field. 

This result suggests that the phenomena of SU(2)L confinement and 
symmetry breaking via the Higgs mechanism should be regarded as one 
and the same thing. Symmetry breaking occurs in the sense that when the 
Higgs field is nonvanishing the unitary gauge is uniquely defined and is 
thus dynamically distinguished from the other gauges. SU(2)L confinement 
occurs in the sense that the field quantities in the unitary gauge can be 
regarded as SU(2)L singlets. For example, the mass splittings inside the 
electroweak multiplets can be understood as a manifestation of the fact 
that the members of these multiplets are in fact gauge singlets not related 
by any symmetry transformation. 

The idea of SU(2)L confinement, when taken seriously has rather deep 
consequences concerning the understanding of the dynamics of the theory. 
The experience with QCD suggests that length-scale-dependent SU(2)L 
gauge coupling must become infinite at some finite length scale so that the 
Weinberg angle, which measures the ratio of U(1) and SU(2)L couplings, 
must vanish at the limit of long length scales. In the second paper of the 
series we will show that also the requirement "the bosonic effective action 
reproduces the Maxwell electrodynamics at long length scales" implies 
SU(2)L confinement in the sense that SU(2)L coupling becomes infinite at 
this limit and the bosonic effective action becomes a pure Maxwell action. 

5. SYMMETRIES OF THE THEORY 

In this section we shall consider the symmetries of the theory. In Section 
5.1 we shall discuss the problem of realizing the action of the isometrics 
on the spinors of H. In Section 5.2 we show that the isometrics of CP2 
indeed deserve the interpretation as color symmetries. In Section 5.3 chiral 
invariance and discrete symmetries are considered. In Section 5.4 we discuss 
the basic particle phenomonology in TGD framework. In Section 5.5 we 
study the various dynamical scenarios possible in TGD framework. 
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5.1. The Representation of the Isometries of H 

In this section we wish to show that the isometrics of  the space H are 
representable as symmetries of the action defining the theory. The problem 
is essentially that of  finding the action of  the isometrics on the spinors; we 
regard the invariance of, say Yang-Mills action under isometrics as obvious. 

It is instructive to prove the infinitesimal representability of  the 
isometrics first in the general case, when H allows ordinary spinor structure. 
So, let 

3h k = ej k (84) 

be an infinitesimal isometry so that its infinitesimal generator jk satisfies 
the well-known Killing identities (Bjorken and Dreil, 1965) 

Dkj, + Dtjk = 0 (85) 

The following theorem holds true: 

Theorem. The quantity 

L = q;F~D~qt (86a) 

is invariant under under the infinitesimal isometrics of  H realized according 
to 

&b = ie (atjk~,kt /2 q.jk Vk ) ~ _  ieX~O (86b) 

Proof  The metric of  X 4 (or any submanifold of H )  is invariant under 
the action of  the isometrics and therefore it suffices to consider the term 

L~t~ = ~F~Dt3~O (87) 

The change of  this quantity can be written as 

3L,,t~ = qT(K~D~ +F~L~)6 (88) 

where the quantities K and L are defined as 

Ks = 6F,, + e[F~, X]  
(89) 

L~ = 6V,~ + eO~X + e[ V,. X]  

Obviously the conditions K = 0 and L = 0 guarantee the invariance of  the 
action, the latter requirement implying that the isometrics act as gauge 
transformations. 

These conditions can be transformed into a simpler form by using the 
definitions of the induced spinor connection and of  the induced gamma 
matrices 

OrFkjr +[Fk, X]+FrOkj r = 0  
(90) 

OrVkjr + V~Okf +OkX +[Vk, X]  = 0  
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The first condition is found to be true by using the covariant constancy of 
the gamma matrices and Killing identities. The derivatives o f j  g contained 
in the second equation can be eliminated by using the equation defining 
the curvature tensor 

DmDnjk - V . D m j g  = R~km.js (91) 

and Killing identities. Using the representation of the vielbein curvature in 
terms of the curvature tensor the second equation can be cast into the form 

Y-cjrRrk,,, = 0 (92) 

where the sum is over the cyclic permutations of the indices k, m, n. Because 
of the so-called cyclic identities satisfied by the curvature tensor this sum 
however vanishes (Adler et al., 1975); thus also the equation (90) is true. 

Next we turn to the case of M 4 x  CP2. Clearly the presence of the 
Kahler potential introduces an additonal term to 8L given by 

6L 1 = ie~F~YkO~sk(n+l§ + n_l_) + g.c. (93) 

where the quantity Yk is defined as 

Yk = OrBkj r + BrOkjr/2 (94) 

Provided the quantity Yk is expressible as a gradient of some quantity, say 
Z, we can indeed compensate L 1 by an infinitesimal U(I)  gauge transforma- 
tion performed for the spinor field 

61t) = - i e Z ( n + l +  + n_l_)~b (95) 

The representation of Yk as a gradient in turn follows from the fact that 
the isometries of CP2 can be regarded as Hamiltonian flows. 

Theorem. The infinitesimal isometries of CP2 can be regarded as 
infinitesimal Hamiltonian flows with respect to the symplectic structure 
defined by the Kahler form J ;  i.e., for an infinitesimal isometry jk there 
exists a Hamiltonian H so that the equation 

j k  = jktH11 (96) 

holds true; as a consequence the quantity Yk is expressible as a gradient 
of the quantity 

Z =jrBr /2  + H (97) 

Proof  The existence of H satisfying equation (96) follows from the 
fact that J is invariant under the isometries and closed as a two-form. 

To see this observe that (96) is equivalent to the integrability condition 

Or(J, , . , j")-Om(Jrnj") = 0  (98) 
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Using the closedness property of J 

s = 0 (99) 

one can transform the equation 

OmYrsj m + JmsOrj m + Jrmcgsj ra = 0 (100) 

expressing the infinitesimal invariance of J under the isometries to the 
equation (98) and thus the existence of the Hamiltonian is shown. The 
representation of the quantity Yk as a gradient is obtained by a direct 
calculation expressing j k  in terms of H. 

Some comments concerning the results just derived are in order. First, 
one might argue that the Hamiltonian associated with the infinitesimal 
isometry is determined only apart from an arbitrary constant. This is not 
however true; with respect to the Poisson bracket the Hamiltonians associ- 
ated withe the various infinitesimal generators form a Lie algebra, which 
must be isomorphic to the Lie algebra of SU(3); this condition fixes various 
Hamiltonians uniquely. 

Second, we have earlier stated (Pitk~inen, 1983) that the isometries are 
not represented in a conventional manner and that the commutator of two 
infinitesimal isometries is given by the formula 

[3"1, J2] = Jrl,23 +jkjt2Fki (101) 

containing an additional term proportional to the curvature form of the 
spinor connection, which leads to a deformation of the original Lie-algebra 
structure. 

We have, however, recently found that this statement is erroneous: a 
careful consideration of the various terms appearing in the commutator has 
shown that the deformation term is absent so that the representation of the 
isometries is an ordinary group representation. 

5.2. Color Symmetries 

In order to elucidate the physical role of the SU(3) isometries it is 
useful to study the action of the isometries using complex coordinates 
(El, ~2) for U P  2. The action of SU(3) on the coordinate variables can be 
deduced from its action on the complex coordinates z k, k-- 1, 2, 3 of j~3 
(ordinary matrix multiplication). The action of SU(3) is clearly nonlinear; 
the maximal linearly realized subgroup is SU(2)•  U(1) representable as 
matrix multiplication with matrices of the form 

(U0• 1/deO(U)) (102) 
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Observe that the center of  SU(3) is represented trivially so that the ordinary 
"spherical harmonics" of  CP2 must have triality zero. 

The infinitesimal action of the subgroup S U ( 2 ) x  U(1) on the com- 
ponents of  the spinor connection is found directly from the representation 
of the vielbein in complex coordinates (Eguchi et al., 1980). The spinor 
connection is invariant under SU(2) and under the group U(1) the com- 
ponents of  the connection transform as objects having an "anomalous"  
color hypercharge 

YA = 2Qem (103) 

The action of  the SU(3) isometrics on the spinor fields is found by noticing 
that the tangent space part of  the infinitesimal isometry jA is proportional 
to the quantity 

X = [jA eBjkeCEBc (104a) 

The bracket represents the commutator of the vielbein vector field and the 
infinitesimal generator of the isometry defined as 

[jA eB]k =jaroreBk _ eBrOrjak (104b) 

Consider first the action of  the isotropy group Ho of the point (scl ~:2) = (0, 0) 
isomorphic to S U ( 2 ) x  U(1). Since vielbein vectors are invariant under 
transformations of SU(2) the action of this group is trivial; in fact any 
SU(2) subgroup being related by a conjugation to the group Ho acts trivially 
on spinors. 

The action of  the U(1) subgroup is nontrivial and induces a rotation 
in the subspace spanned by the vielbein vectors e I and e 2. Thus the vielbein 
rotation is proportional to the generator El2 and is diagonal and same for 
both CP2 chiralities. By a direct calculation one finds that also the spinors 
carry an anomalous hypercharge YA = 2Qem. 

The action of the remaining isometries on the right-hand (in CP2) 
spinors is also diagonal. The vanishing of the part mixing the components 
of the spinor field is easy to verify by using the complex coordinate 
representation of the vielbein vectors (e I and e 2 (e ~ and e 3) a r e  real and 
imaginary parts of  the same complex vector). 

The hypercharge changing infinitesimal isometries mix the components 
of the left-handed (in CP2) spinors in the gauge used and one might argue 
that gluons corresponding to these infinitesimal generators are electromag- 
netically charged. We don' t  believe that this is the case. The point is that 
one can find a gauge where the action of  all SU(3) isometries is diagonal 
as we wish to demonstrate now. 

Since CP2 is a coset space (SU(3)/SU(2) • U(1)) one can associate 
with each point s of CP2 an element of SU(3) defined to have the property 
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that it carries some reference point So (say the origin in complex coordinates) 
to the point in question. This group element is not unique; given a choice 
g(s) any other choice related to the original one by the equation 

g,(s) = h,g(s)h~o , hs ~ Hs, hso~ H~o (105) 

is equally good. Since SU(3)-~ CP2 is nontrivial as bundle, the map s ~ g(s) 
cannot be made continuous in whole CP2. 

The gauge transformation in question is defined by the action of the 
group element g(s) to the spinor field. If  the spinors are eigenstates of the 
U( 1 ) generator in the original gauge the different choices of the map s ~-~ g(s) 
induce a mere phase transformation of the spinor field. In a similar manner, 
the gauge transformation associated with a given SU(3) isometry reduces 
to a mere phase transformation. 

Clearly, this representation of color isometries is analogous to the 
massless representations of Poincar6 group in the sense that anomalous 
hypercharge and thus the electromagnetic charge corresponds to the helicity 
of the massless particle. 

Concerning the physical interpretation of the results obtained there 
are two alternative scenarios depending on whether the equation YA = 2Qem 
is assumed to be true 

(t) completely generally so that physical particles cannot correspond 
to ordinary irreducible representations of the color group (which are elec- 
tromagnetically neutral). 

(2) only for the spinor fields and gauge potentials and physical particles 
are assumed to correspond to ordinary irreducible representations of the 
color group. 

We have believed the scenario 2 to be the correct one hitherto but this 
belief need not be correct as we will find soon. 

In the first scenario only the leptonic spinors need to be introduced as 
elementary fermion fields since quarks can be identified as leptons moving 
in pseudotriplet color partial wave carrying anomalous hypercharge -2 /3 .  
In the scenario 2 one must assume that quarks and possibly also leptons 
are elementary fermion fields in order to obtain fractionally charged states. 

Common ingredients for the both scenarios are the pseudotriplet 3 = 
(fk, k - 1, 2, 3) defined as 

fk = ~k/( 1 + r2),/2(~3 _= 1) (106) 

and its complex conjugate 3 = {fk}. 
Using the representation of the pseudotriplet in ~3 coordinates 

f k  = z k ( ~ 3 / [ Z 3 1 ) / ( ~ k Z k ~ k ) l / 2  (107a) 

one finds that pseudotriplet transforms as an ordinary SU(3) triplet apart 
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from the phase factor U defined as 

U = ~.3/Iz31 (107b) 

This phase factor carries an anomalous hypercharge YA =--2/3. 
In the scenario 1 quarks correspond to leptons moving in pseudotriplet 

partial wave in the sense to be described more precisely later. The fractional 
charges + ( - ) (2 /3 , -1 /3 )  for quarks (antiquarks) result by assuming that 
antileptons (leptons) can move only in pseudotriplet (conjugate pseudotrip- 
let) partial waves. 

Of course, one can wonder why antileptons move only in the triality 
1 pseudotriplet but not in its complex conjugate carrying charges (4/3, 1/3) 
instead of the conventional quark charges. We believe that the explanation 
is related to the nontriviality of the spinor bundle structure. The requirement 
that spinor partial waves are sections in the spinor bundle excludes the 
conjugate triplet. 

In fact, in the case of S e with U(1) bundle structure corresponding to 
a magnetic charge n = 1 this is what occurs. The pseudodoublet (z, 1)/(1 + 
z~.) 1/2 corresponds to a section in this bundle but not its complex conjugate. 
The reason is that the rigorous definition of the spinor section requires the 
introduction of two coordinate batches (upper and lower hemisphere). The 
pseudodoublet represents the spinor section only in the upper hemisphere 
and its representation in the lower hemisphere is obtained by multiplying 
with the phasefactor e/lel. Complex conjugate doublet is not a section, 
since it corresponds to a spinor field, which is infinitely manyvalued on the 
south pole of S 2. 

Consider next the probably mathematically inconsistent scenario II 
based on the assumption that the connection between anomalous hyper- 
charge and electromagnetic charge holds true only for the spinor fields and 
gauge fields. 

One of the basic assumptions of the quantum theory is that physical 
states must correspond to irreducible representations of the symmetry group 
of the theory. Since the induced spinor field is not SU(3) singlet but carries 
anomalous hypercharge, this requirement implies that one must multiply 
the spinor field by suitable functions of the coordinate variables in order 
to obtain an irreducible representation of SU(3). 

In order to cancel the anomalous hypercharges one can use besides 
the pseudotriplets 3 and 3_- the phase factor V defined as 

V = r162 (108) 

This phase factor carries an anomalous hypercharge YA = --2. 

The spinorial spherical harmonics are constructed using the following 
recipe: 
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(1) Perform a gauge transformation g given by 

g = (13+ 13 + Id/2) V (109) 

This gauge transformation cancels the anomalous hypercharge associated 
with gauge bosons and charged leptons. Clearly, one can construct leptonic 
partial waves by multiplying leptonic spinors with definite electromagnetic 
charge with ordinary triality zero CP2 partial waves. 

(2) When the spinor is quark (antiquark) like the remaining anomalous 
charge (= -2 /3  for U and D type spinors) is cancelled by multiplying the 
complex conjugate of the pseudotripfet so that the total anomalous hyper- 
charge is cancelled. 

We have only recently realized that the scenario 2 is probably not 
mathematically consistent. The weak point is the use of the phase factor V 
to gauge away the anomalous hypercharge associated with leptons and gauge 
bosons; this gauge transformation is not single valued at the origin of CP2! 
As a consequence the leptonic spinors become infinitely many valued at 
the origin of CP2 in the new gauge. This result suggests that the delicacies 
of the spinor bundle structure prevent the construction of the ordinary 
irreducible representations. 

We conclude this section with an argument, that gives additional 
support to idea that the connection between electromagnetic charge and 
anomalous hypercharge is completely general. The argument is based on 
the representation of the spinor field in terms of the spherical harmonics 
of the space H. The study of the covariant derivative of the spinor field 
partial wave expansion shows that the ordinary derivatives of the CP2 partial 
waves can be interpreted in terms of the ordinary gluonic couplings when 
the CP2 partial waves in question correspond to ordinary irreducible color 
representations. In particular, the electromagnetic charge doesn't depend 
on the ordinary hypercharge of the particle. 

In case of the pseudotriplet one can divide the gluonic coupling into 
two parts: the ordinary gluonic coupling plus an anomalous term. The 
anomalous term reduces to a coupling to Kahler potential with unit coupling 
strength. Thus one can say that the pseudotriplet differs from the ordinary 
triplet in that it has an additional electromagnetic charge Qem = YA/2. 

To begin with consider the definition of the gluonic gauge potentials. 
We have already found that the projections of the isometry generators jA 
behave as gluon fields. Indeed these quantities are gauge potentials since 
they define a covariant derivative with respect to which the Hamiltonians 
of the CP2 isometries are covariantly constant. 

OkH s + ijA T~)c H c = 0 (110) 

Here the quantities T~sc are the representation matrices of the Lie-algebra 
generators in the adjoint representation. 
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The identities leading to the result are the following one 

.A.l S~ ( l l l a )  
J k J a  ~- 

�9 k B 
J A O k H  = iT~c  Hc  (11 lb) 

Next we introduce the partial wave expansion for the spinor field using a 
complete spinor basis of the space H. 

O(x) = V.c.(x)g~~ h(x) ) (112a) 

The spinor field is understood as a general solution of the Dirac equation 
as a functional of the surface X 4. The partial waves can be written as tensor 
products of  M 4 and CP2 spinor partial waves 

~O"(h) = f k ( m ) |  Yi(s) (l12b) 

Consider now the covariant derivative of  the spinor field represented 
in terms of the partial waves. We shall first show that when the partial 
waves correspond to an ordinary irreducible SU(3) representation the 
ordinary derivatives of the CP2 partial waves can be transformed to ordinary 
gluon coupling terms. Using the identities (111) and the definition of the 
gluonic field the derivative of the CP2 partial wave can be cast to the form 

Ok g l  = " 'A  .r lJkJ AOrYl (113) 

For the ordinary irreducible representations the term involving the action 
of the infinitesimal generator can be written in terms of the representation 
matrices of  the Lie-algebra generators and one obtains just the ordinary 
gauge coupling term. Thus the color interactions are gauge interactions and 
gluons are neutral since the electromagnetic coupling doesn't depend on 
the ordinary hypercharge. 

Next we treat the case of the pseudotriplet partial waves. Since this 
triplet differs from the ordinary color triplet only by a phase factor transform- 
ing as the quantity U = Z3/IZ3 [ it is clear that the action of the infinitesimal 
generator on the pseudotriplet can be divided into two parts. The first part 
is simply the linear action giving rise to an ordinary color coupling between 
gluons and color triplet and the second term can be written in the form 

XMYI = igASAUU-1yt (114) 

The quantity 6A U is simply the derivative of the phase factor U with respect 
to the infinitesimal isometry jA interpreted as an isometry of ~,3. 

What is important is that the quantity OAUU -1 and thus also XM is 
function of  CP2 coordinates only. 

By a direct calculation using the explicit expressions of the infinitesimal 
generators one finds that this term equals to the coupling of the Kahler 
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potential to the spinor field and the coupling strength equals to unity. 
Recalling how the coupling to the Kahler potential controls the values of 
the electromagnetic coupling one can-conclude that the equation Qem = YA/2 
applies completely generally. 

The above reasoning leads to a concrete definition of the spinor partial 
wave concept and shows that gluons indeed exist and mediate gauge 
interactions. In addition, it strongly suggests that the connection YA = 20em 

holds completely generally so that the scenario 1 in which quarks are leptons 
in pseudotriplet partial waves is the correct one. Probably this scenario is 
also the simplest scenario one can imagine. In the second paper of the 
series we shall find that this scenario predicts for the bare Weinberg angle 
Ow the value sin 20w = 1/4, which is remarkably close to the experimental 
value (~0.23). In this scenario one must however give up the idea that 
particles correspond to ordinary irreducible representations of the color 
group and it is not probably wise to draw any final conclusions at this stage. 

5.3. Generalized Chiral Invariance and Discrete Symmetries 

The generalized chiral invariance is necessary if one wants two con- 
served fermion numbers (or to pose chirality condition on spinors). The 
action of the chiral transformation on the spinor field is given by 

~b ~ exp( iaX)~b (115) 

Here the quantity X is a linear combination of the matrices 1 and Fg. 
The most general spinorial action invariant under the chiral transforma- 

tions is of the form given by equation (64). The generalized chiral invariance 
together with the assumption that both leptons and quarks are elementary 
fermions implies the absolute stability of the proton against spontaneous 
decay provided the quarks are massive enough. 

We base our treatment of discrete symmetries C, P, and T on the 
following requirements. First, the symmetries must be realized as purely 
geometric transformations. Second, the transformation properties of the 
field variables should be essentially the same as in the conventional field 
theories (Bjorken and Drell, 1965). Finally, the assumption about the 
Grassmann valuedness of the spinors is made. 

The realization of the reflection corresponding to the intuitive picture 
about the parity breaking is 

m k ~ P (m  k) 
(116) q~ _~ yo x yo~ 

in the representation chosen for the gamma matrices. Indeed, the gauge 
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bosons W • and Z ~ break the symmetry because they do not commute with 
the matrix 3, o x 7 ~ 

The guess that a complex conjugation in CP2 is associated with the T 
transformation of the physicist turns out to be correct. One can verify by 
a direct calculation that the pure Dirac action (l = 0) is invariant under T 
realized according to 

mk~ T(m k) 

~k -~ (k (117) 

0--~" 3,13,3 X 10  

When the parameter l is nonvanishing the action is not invariant under T; 
the reason is that the term involving the Kahler form is T odd. The T 
oddness follows from the fact that the Kahler form changes sign under the 
complex conjugation in CP2 unlike the metric. 

The operation bearing the closest resemblance to the ordinary charge 
conjugation corresponds geometrically to complex conjugation on CP2: 

(118) 
0 -~ 32 x 3,00+ 

From the results just derived we can conclude that the discrete symmetries 
CP and T are exact symmetries of the theory defined by pure Dirac action. 
When the parameter l is nonvanishing the part of the action involving the 
Kahler form is T and CP odd so that only CPT is an exact symmetry of 
the action. It is rather encouraging that the Kahler structure makes possible 
a CP breaking action. It is even more encouraging that the requirement 
"Neutr inos are massless" leads to a unique CP breaking term. 

5.4. Particle Phenomenology and TGD 

One of  the main virtues of the TGD approach is that it provides a 
possibility to geometrize particle spectroscopy. The particle classification 
in CP2 framework is based on the use of baryon a~d lepton numbers; 
electroweak quantum numbers, color quantum numbers and topological 
quantum numbers g (genus of the boundary component) and h (homology 
equivalence class of the boundary component).  

Since there are no symmetries transforming the various particle gener- 
ations to each other they are expected to behave identically with respect to 
the basic interactions; this prediction is in accordance with the experimental 
facts. 

We think that the approximate flavor and even spin flavor symmetry 
is a combinatorial artefact, which can be understood by assuming that 
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hadrons are describable as 3-quark states to a good approximation at low 
energies. The complete symmetry of the 3-particle statefunction with respect 
to one particle labels (g, I, spin) implies that the states--can be formally 
regarded as a basis for an irreducible representation of an appropriate spin 
flavor group. 

Of course, this group has a purely formal meaning; it is the transforma- 
tion properties of the individual states under permutations of the one particle 
labels, which leads to the illusion about the presence of a real symmetry. 

The proposed explanation for the family replication phenomenon 
besides being in concordance with the idea of the universality, also explains 
the basic phenomenological rules characterizing electroweak interactions 
of hadrons. 

Consider first the well-known AI = 1/2 rule observed in the decay of 
the strange particles. The rule is understood once it is realized that the 
notion of the strong isospin is artificial and instead of it one should label 
the hadronic states using the weak isospin having a genuine group theoretical 
meaning. In general the multiplet assignments obtained using Is and Iw 
differ, but in such a way that the above-mentioned nonconservation law 
becomes a conservation law for the weak isospin. For instance, the kaon 
doublets decompose into a triplet and singlet with respect to the weak 
isospin and therefore in the decay K ~ ~-+~-- the final state with Iw -- 2 is 
suppressed relative to that with Is = Iw = O. 

Cabibbo mixing is another peculiar phenomenon, where both the weak 
and the strong interactions are involved (Kobayashi and Maskawa, 1973). 
TGD approach predicts a topological transition changing the genus of the 
boundary component by one unit. Therefore we expect mixing between 
different particle generations to take place and thus to be observable in 
weak transitions mediated by the charged bosons W • 

The mixings can be described phenomenologically using unitary 
matrices U and D defined as 

D , ~  D~Dj = 1~, 
(119) 

Since the emission of the weak boson does not change the boundary topology 
(we neglect the possible mixing between possible bosonic generations), the 
amplitude for the process U~ ~ / 5  s must be proportional to the quantity 

U~ lSik (120) 

which is nonvanishing unless the mixings suffered by U and D differ only 
by a phase multiplication performed for the "initial" and "final" states. 
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The absence of generation changing neutral currents is also a peculiar 
phenomenon having a nice explanation as a manifestation of the Ag = 0 
nature of the weak boson emission; the corresponding matrix element 
Ui-+ ~ ( / ~ i ~ / ~ )  is proportional to the quantity U~k(D~ff~k) and thus 
vanishes. 

5.5. Possible Dynamical Scenarios 

When discussing the representation of the color isometries we found 
the emergence of two profoundly different physical scenarios. 

(1) The equation YA = 2Q,m holds completely generally and quarks 
correspond to leptons moving in pseudotriplet partial waves of CP2. Physical 
particles do not correspond to ordinary irreducible representations of the 
color group. 

(2) The equation YA = 2Q,m is true only for spinor fields and gauge 
potentials. Physical states correspond to ordinary irreducible representations 
of the color group with no anomalous hypercharge. 

We found that the first scenario is probably the correct one but that 
at this stage it is impossible to make any final conclusions. 

The nice property of the first scenario is that it leads to an essentially 
unique theory in which leptonic spinors are the only elementary spinor fields. 

The second scenario allows several variants depending on whether both 
leptons and quarks are considered to be elementary particles or not. In the 
most simple minded scenario leptons and quarks correspond to different 
chiralities of H-spinors and baryon and leptons numbers are separately 
conserved; in this respect the scenario differs from the typical unification 
scenarios, say GUT's (Georgi and Glashow, 1974; Fritch and Minkosk, 
1975). 

The prediction of two conserved fermion numbers is however not a 
necessary outcome of this scenario since one can imagine, in some respects 
simpler variants of the scenario 2, in which the quarks are the only elemen- 
tary fermions. 

The first scenario of this kind is roughly the following: 
(1) Leptons are assumed to correspond to 3-manifolds with boundary 

and carrying quark number N = -3 so that leptons are 3-quark composites 
of type L = qqq. This assumption has the highly desirable consequence that 
the topological explanation of the family replication phenomenon need not 
be given up. 

It is not necessary to assume that quark number resides on the boun- 
dary; leptons (quarks) might well be analogous to many quark states 
constructed using quark field operators defined in the interior of the leptonic 
(quark) 3-manifold. If elementary particles are modelled as little pieces of 
Minkowski space the presence of the boundary component is a necessity. 
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(2) Quarks move in color triplet partial waves and leptonic states are 
color singlets and thus completely antisymmetric under the permutation of 
the color labels. In this respect leptons resemble antibaryons. 

(3) The part of the leptonic state function, which corresponds to spin 
and electroweak spin transforms according to the direct product rep- 
resentation 

(2 x2) |  x2) |  x2) = ( 4 0 2 |  x (4q )202 )  (121) 

of SU(2) x SU(2)r, where the first factor refers to the rotation group. This 
scenario predicts a rich structure inside each leptonic family. There should 
exist four leptonic states with essentially identical electroweak properties 
inside each family besides the excitations having spin or (and) weak isospin 
equal to 3/2. 

If the naive expectation that leptons correspond to 3-manifolds of size 
L<< l / m r  is true, one expects that the description of the leptons as purely 
point like objects should be a good approximation and the corrections 
resulting from the compositeness to the leptonic magnetic moments should 
be very small. In fact, a naive dimensional argument based on the assumption 
that the vacuum expectation of Higgs field determines the mass of the 
lepton, leads to the order of magnitude estimate 

m r  ~-- R ~  L 2 ( 1 2 2 )  

Thus the size of lepton is roughly given by the geometric mean of Planck 
length and leptonic Compton length and is roughly of the order of intermedi- 
ate boson Compton length for electron. 

In the second scenario leptons correspond to local composites of type 
q ( x ) q ( x ) q ( x )  formed from quarklike spinors. Fermi statistics requires that 
the spin-weak isospin part of the leptonic state functional corresponds to 
the completely antisymmetric part of the product of three 2 x2's (color 
quantum numbers are not spinlike!) 

((2 x2) |  x2) |  X2))A =2 X2 (123) 

This kind of scenario results naturally if both quarks and leptons correspond 
to components of a superfield (Gelfand and Likhtman, 1971; Volkov and 
Akulov, 1973; Wess and Zumino, 1974a, b) 

f ~ ( x )  = s 1 6 3  " " . Ot~,,,ff% " " " i f% (124) 

where the theta parameters are anticommuting numbers. Quarks would 
correspond to the term - 0  and leptons to the term 000 in this expansion. 
It should be noticed that the term 0 0 0 0 0  also gives rise to a particle with 
the leptonic quantum numbers. No excited leptons with nonconventional 
quantum number assignments are predicted. 
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Baryons are expected to be unstable against spontaneous decay in all 
scenarios satisfying the chirality condition. An estimate for the decay rate 
baryon ~ lepton + X  is obtained by imagining hadron as a ball of radius of 
the order of a typical hadronic length and quark as a ball of radius Rq 
placed on the hadronic "bag." The rate of decay is obtained by the following 
line of reasoning. 

The rate for two quark collisions is proportional to the quark density 
and to the area of the quark sphere 

2 3 
r2 ~ R q / R h  (125) 

The rate for 3-quark collisions is in turn proportional to the rate for two 
quark collisions and the probability that a given quark happens to be inside 
a given ball of radius R1 

2 3 
r 3 -= ( R q / R h )  * ( R q / R h )  3 ( 1 2 6 )  

By requiring that the lifetime of proton is larger than 1030 years one obtains 
the lower bound 

R q /  R h < 10 -15 (127) 

Thus quarks should have a rather small size. 
Although the question "Which of the proposed scenarios is closer to 

the truth" cannot be settled at this stage, one could argue that the scenario 
with minimal number of elementary fermions (either leptons or quarks) is 
probably the correct one. Whether the Nature has followed this kind of 
argumentation is of course a question to be solved experimentally. In fact, 
some indications about the existence of excited leptons exists (Collab, 
1983b). Our personal opinion is that the scenario assuming only leptonic 
spinors as fundamental field variables is probably the correct one. 

ACKNOWLEDGMENTS 

I wish to thank all those people who have helped me to carry out this 
work. I am indebted to Prof. D. Finkelstein for criticism and encouragement 
at the early stage of this work. Also I gratefully ackowledge the thorough 
criticism of  Prof. J. A. Wheeler concerning the basic ideas of TGD approach. 
My sincere thanks are due to Prof. H. Rrmer  for interesting and clarifying 
discussions. Also I thank Prof. C. CronstrSm, Doc. R. Keskinen, and Prof. 
J. Mickelson for encouragement and help as well as for enlightening dis- 
cussions. Also I am very much obliged to Dr. T. Perko and Doc. A. Kupiainen 
for useful conversations. 



820 Pitk~nen 

R E F E R E N C E S  

Abers, E. S., and Lee, B. W. (1973). Physics Reports, 9, 20. 
Adler, Basin, and Schiffer, Introduction to General Relativity. McGraw-Hill, New York. 
Anderson, B., Gustafson, C., Ingelman, G., and Sjostrand, T. (1983). Physics Reports, 97. 
Bailin, D. (1977). Weak Interactions. Sussex University Press, Sussex, England. 
Bilenki, S. M., and Pontecorvo, P. (1978). Physics Reports, 41C, 225. 
Bjorken and Drell, (1965). Relativistic Quantum Fields. McGraw-Hill, New York. 
Brander, M. (1981). Physics Reports, 75, 4. 
Chew, G., and Rosenzweig, C. (1978). Physics Reports, 41C. 
Close, F. E. (1979). An Introduction to Quarks and Partons. Academic Press, New York. 
Crofiin, J. W. (1981). Reviews of Modern Physics, 53. 
Denisov, V. I., and Mestrishvili, M. A. (1981). Soviet Journal Particles and Nuclei, 12, 1. 
Eguchi, T., Gilkey, B., and Hanson, J. (1980). Physics Reports, 66, 6. 
Eisenhart, (1964). Riemannian Geometry. Princeton University Press, Princeton, New Jersey. 
Faddeev, L. D. (1982). Soviet Physics Uspekhi, 25(3). 
Fitch, V. L. (1981). Reviews of Modern Physics, 53. 
Fritch, H., and Minkowski, P. (1981). Physics Reports, 73, 2. 
Fritsch, H., and Minkoski, P. (1975). Annals of Physics (New York), 193. 
Gelfand, Y. A., and Likhtman, E. P. (1971). J.E.T.P. Letters, 13, 323. 
Georgi, H. (1975). Particles and Fields-1974, C. E. Carlson, ed. A.I.P., New York. 
Georgi, H., and Glashow, S. L. (1974). Physical Review Letters, 32, 430. 
Gibbons, G. W., and Pope, C. N. (1978). Communications in Mathematical Physics, 61, 239. 
Glashow, S., (1961). Nuclear Physics, 22, 579. 
Hawking, S. W., and Pope, C. N. (1978). Physics Letters, 73B, 1, 42. 
Helgason, S. (1978). Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, 

New York. 
Hilton and Wiley, (1966). Homology Theory. Cambridge University Press, Cambridge. 
Husemoller, (1960). Fibre Bundles. McGraw-Hill, New York. 
Jacob, M. (1974). Dual Theory. North-Holland, Amsterdam. 
Kaluza, Th. (1921). Sitzungsberichte der Preussischen Akademie der Wissenschaften Berlin, 

Mathematische-Physikalisch Klasse. 
Klein, O. (1926). Zeitschriftfiir Physik, 37, 895. 
Kobayashi, M., and Maskawa, K., Progress in Theoretical Physics, 49, 652. 
Madore, J. (1981). Physics Reports, 75(3). 
Misner, Thorne, and Wheeler, Gravitation. W. H. Freeman and Company, San Francisco, 1975. 
Milnor, J. (1965). Topology from Differential Point of View, Chap. 7. The University Press of 

Virginia, Charlottesville, Virginia. 
Nambu, Y. (1970). Lecture Notes Presented for the Summer Institute of the Niels Bohr Institute 

(SINBI). 
Pitk~inen, M. (1981). International Journal of Theoretical Physics, 20, 843. 
Pitkfinen, M. (1983). International Journal of Theoretical Physics, 22, 575. 
Politzer, H. D. (1974). Physics Reports, 14C. 
Reya, E. (1981). Physics Reports, 69, 197. 
Salam, A. (1968). In Proceedings of the 8th Nobel Symposium, Stockholm, N. Swartholm, ed. 

Almqwist and Wicksells, Stockholm. 
Shanahan, (1978). Atyiah-Singer Index Theorem, Lecture Notes in Mathematics 638. Springer- 

Verlag, New York. 
Susskind, L., and Kogut, J. (1976). Physics Reports, 23, 348. 
Thom, R. (1954). Commentarii Math. Helvet., 28, 17. 



Topological Geometrodynamics. I 821 

UA1 Collab., G. Arnison et al., Physics Letters, 126B (1983a); Physics Letters, 135B (1984). 
UA2 Collab., P. Backala et al., Physics Letters, 124B (1983b). 
Wallace, (1968). Differential Topology, Chaps. 6 and 7. W. A. Benjamin, New York. 
Weinberg, S. (1967). Physical Review Letters, 19, 1264. 
Weinberg, S. (1979). Physics Review Letters, 42, 850. 
Volkov, D. V., and Akulov, V. P. (1973). Physics Letters, 46B, 109. 
Wess, J., and Zumino, B. (1974a). Nuclear Physics, B70, 39; Wess, J., and Zumino, B. (1974b); 

Nuclear Physics, B78, 1. 
Witten, E. (1980). Princeton University preprint. 
Yoshimura, M. (1978). Physics Review Letters 41, 281; Phys. Rev. Lett. 42, 746(E) (1979). 


